Embedding of RCD?(K,N) spaces in L2 via eigenfunctions

نویسندگان

چکیده

In this paper we study the family of embeddings ?t a compact RCD?(K,N) space (X,d,m) into L2(X,m) via eigenmaps. Extending part classical results [10], [11] known for closed Riemannian manifolds, prove convergence as t?0 rescaled pull-back metrics ?t?gL2 in induced by ?t. Moreover discuss behavior with respect to measured Gromov-Hausdorff and t. Applications include quantitative Lp-convergence noncollapsed setting all p<?, result new even manifolds Alexandrov spaces.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedding measure spaces

‎For a given measure space $(X,{mathscr B},mu)$ we construct all measure spaces $(Y,{mathscr C},lambda)$ in which $(X,{mathscr B},mu)$ is embeddable‎. ‎The construction is modeled on the ultrafilter construction of the Stone--v{C}ech compactification of a completely regular topological space‎. ‎Under certain conditions the construction simplifies‎. ‎Examples are given when this simplification o...

متن کامل

Approximation of eigenfunctions in kernel-based spaces

Kernel-based methods in Numerical Analysis have the advantage of yielding optimal recovery processes in the ”native” Hilbert space H in which they are reproducing. Continuous kernels on compact domains have an expansion into eigenfunctions that are both L2-orthonormal and orthogonal in H (Mercer expansion). This paper examines the corresponding eigenspaces and proves that they have optimality p...

متن کامل

embedding measure spaces

‎for a given measure space $(x,{mathscr b},mu)$ we construct all measure spaces $(y,{mathscr c},lambda)$ in which $(x,{mathscr b},mu)$ is embeddable‎. ‎the construction is modeled on the ultrafilter construction of the stone--v{c}ech compactification of a completely regular topological space‎. ‎under certain conditions the construction simplifies‎. ‎examples are given when this simplification o...

متن کامل

Embedding normed linear spaces into $C(X)$

‎It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$‎. ‎Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology‎, ‎which is compact by the Banach--Alaoglu theorem‎. ‎We prove that the compact Hausdorff space $X$ can ...

متن کامل

Local Parametrizations via Laplacian Eigenfunctions

Eigenfunction methods for mapping high dimensional data sets into lower dimensional spaces are useful in a broad range of applications. In particular, a recent paper by Jones et al [2] shows that eigenfunctions of the Laplacian operator give a good local coordinate system under very general conditions. Here I outline the proof of the theorem and explore its use in cryo-electron microscopy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2021

ISSN: ['0022-1236', '1096-0783']

DOI: https://doi.org/10.1016/j.jfa.2021.108968